Study of Flame Flashback Phenomena for the Safety of Hydrogen-Rich Fuel Burners

Georg Baumgartner
PhD candidate

With financial support from the BIGCCS Centre
Background and Motivation

• Pre-combustion CO₂-capture
 → hydrogen-rich fuels

• NOₓ ↓ → Lean premixed combustion

• Hydrogen is extremely reactive
 → Risk of flame flashback into premixing section

Industrial relevance: How to design safe and reliable burners for highly reactive fuels?
Overview

• Background and Motivation

• Boundary Layer Flashback – Theory and State of the Art

• High-Speed Flashback Movie

• Highlights of the Experimental Work

• Conclusions
Overview

• Background and Motivation

• **Boundary Layer Flashback – Theory and State of the Art**

• High-Speed Flashback Movie

• Highlights of the Experimental Work

• Conclusions
How Flashback is Initiated

Upstream flame propagation in low-velocity region close to the wall!
Flashback Limits of H₂-Air Flames – State of the Art

Velocity gradient as a measure of the flashback propensity!

H₂-air flames at ambient temperature / pressure

But: No interaction of flame and flow accounted for!
Overview

• Background and Motivation

• Boundary Layer Flashback – Theory and State of the Art

• **High-Speed Flashback Movie**

• Highlights of the Experimental Work

• Conclusions
High-Speed Flashback Movie

H₂-air flame, unconfined, \(\Phi = 0.57 \) („fuel-to-air ratio“)
Overview

• Background and Motivation

• Boundary Layer Flashback – Theory and State of the Art

• High-Speed Flashback Movie

• Highlights of the Experimental Work

• Conclusions
Flashback Limits for Confined and Unconfined Flames

- Literature results for unconfined tube flames reproduced well
 → Test rig suitable for flashback experiments!
- Flashback propensity for confined flames substantially higher!

Influence of Boundary Layer Air Injection

Influence of Swirl - Detail

High-Speed Flashback Movies
Velocity Field (High-Speed Micro-PIV)

Stable flame

Flame at flashback

→ Flow is retarded and deflected by flame!
Overview

• Background and Motivation

• Boundary Layer Flashback – Theory and State of the Art

• High-Speed Flashback Movie

• Highlights of the Experimental Work

• Conclusions
Conclusions

• Substitution of hydrocarbons for hydrogen
 → Increasing flashback (FB) propensity

• Flame confinement: Extremely negative influence on FB stability
 → FB limits from literature not reliable for safe gas turbine designs!

• Boundary layer air injection: Positive influence on FB propensity

• Swirling flow: Positive and negative effects on FB propensity

• Interaction between flow and flame during flashback
 → State-of-the-art model for flashback not satisfactory/applicable
 → Development of a new model necessary
Study of Flame Flashback Phenomena for the Safety of Hydrogen-Rich Fuel Burners

Georg Baumgartner
PhD candidate

With financial support from the BIGCCS Centre
Additional Material
Microscopic Particle Image Velocimetry (PIV)

Small tracer particles are injected into the flow to measure the flow velocity!
Bacatec Study
Design of the Test Rig at TU München

- Fully turbulent flow conditions
- Air preheating up to ca. 450°C possible
- Optional flame confinement
- Optional swirl generator
Flashback in the Boundary Layer

Critical velocity gradient theory:

Flame speed outbalances flow velocity at certain vertical distance from wall (δ_b)

$$g = \left(\frac{\partial u}{\partial y} \right)_w = \frac{\tau_w}{\eta} \leq g_{krit} \rightarrow \text{Flashback}$$

S_f: Flame speed (Burning velocity)

δ_q: Quenching distance

η: Dynamic viscosity

Velocity gradient as a measure of the flashback propensity!
Possible Explanation for Deviations

Unconfined flame:
→ Radial leakage flow through quenching gap
→ Radial heat flow

Confined flame:
→ Radial leakage flow restricted
→ Radial heat flow restricted